Evaluation of Supervisory Control Interfaces for Mobile Robot Integration with Tactical Teams*

Alexander Lalejin1, Dexter Duckworth2, Richard Sween1,3, Cindy L. Bethel1,3, Daniel Carruth3

Abstract—As robotic systems become more sophisticated, they are increasingly called upon to accompany humans in high-stress environments. This research was conducted to support the integration of robotic systems into tactical teams operating in challenging and stressful environments. Robotic systems used to assist tactical teams will need to support some form of autonomy; these systems must be capable of providing operators supervisory control in cases of unpredictable real-time events. This research evaluated the relative effectiveness of four different methods for supervisory control of an autonomously operated mobile robotic system: (1) hand gestures using a Microsoft Kinect, (2) an interactive Android application on a handheld mobile device, and (3) verbal commands issued through a headset. These methods of supervisory control were compared to a teleoperated robot using a gamepad controller. The results from this pilot study determined that the touchscreen device was the easiest interface to use to override the robot’s next intended movement ($L^2(2,23)=11.413$, $p=.003$, $d=1.58$) and was considered the easiest interface to use overall ($L^2(3,23)=8.078$, $p=.044$, $d=.93$). The results also indicate that the touchscreen device provided the most enjoyable, satisfying, and engaging interface of the four user interfaces evaluated.

I. INTRODUCTION

Law enforcement Special Weapons and Tactics (SWAT) teams are required to respond to dangerous and often unpredictable environments as part of their official duties. This may involve such high-risk tasks as serving arrest and search warrants, engaging with active shooters that may be heavily armed, subduing barricaded suspects, negotiating the release of hostages, obtaining intelligence information about criminal activity, and searching large buildings for dangerous suspects. These officers are trained to handle these high-risk situations with minimal force, injury, property damage, and/or loss of life. The use of a mobile robot in these types of incident responses adds a layer of protection between the actions and the perception capabilities of these robots for surveillance was published by Crowley in 1987 and explored the use of mobile robots and the coordination of the actions and the perception capabilities of these robots for surveillance purposes [1]. He proposed a robotic architecture for the control of the robot and the best method of navigating these mobile robots to conduct surveillance in a building environment. This was a seminal paper in robot navigation, control, and perception in building environments.

In 1999, the Defense Advanced Research Projects Agency (DARPA) announced a Tactical Mobile Robotics Program to explore the use of mobile robots in tactical teams [2]. DARPA at that time was very interested in this area because it was becoming evident that military conflicts would occur in populated, urban environments with buildings and similar types of terrain features. The emphasis of the program was:

“Researching and developing the capability to perform urban reconnaissance with teams of small, low-cost, semiautonomous mobile robots. Easily transportable by individuals, these robot teams will be capable of working together to perform a variety of reconnaissance functions.” [2]

After this program announcement to the research community, considerable focus was devoted to this program [3]–[7]. One focus of these research efforts was on the development of small, man-portable robots with some level of autonomy for use in urban terrains; however, the development of interfaces for supervisory control was not explored. A second focus was maintaining communications with these robots in environments that were not communication-friendly because of large amounts of metal and concrete in the structures, which impeded wireless communications and robot controls during teleoperation procedures [7].

Lundberg and Christensen performed preliminary research assessing the use of man-portable robots in law enforcement applications related to tactical missions [8]. This research included an 5-month study using the Packbot Scout robot integrated with a SWAT unit in Sweden. Their data included two sets of interviews with users in high-risk environments and the incorporation and assessment of robots for use in this type of field application. In this research, the robot
was teleoperated during trainings and one field response, and there was no consideration of methods of supervised autonomy and control.

For the past two years, members of the Social, Therapeutic, and Robotic Systems (STaRS) research lab at Mississippi State University have collaborated with members of the Starkville Police Department’s SWAT team to integrate an unmanned ground vehicle as part of their training events associated with slow-and-methodical searches of large-scale buildings. The focus has been on the development of an autonomous mobile robot to accompany the team and perform reconnaissance, surveillance, and distraction tasks to provide an additional layer of safety and protection for the team members [8].

The primary goal, is for an autonomous robot to operate alongside the team and it must also be able to serve as a member of the team. In order to coordinate in dangerous and covert situations, a team member will often use hand signals to communicate to the rest of the team his or her next intended action, as well as to give commands to the other team members. Therefore, if a robot is to be successfully integrated with the team, it must be able to communicate its intended actions and operate independently through some method of supervisory control.

A previous study was conducted to determine the best method for communicating a robot’s next intended movement. That study evaluated three methods for the communication of the robot’s intent: (1) an LED array powered by an Arduino device, (2) an Android smartphone, and (3) a Bluetooth headset. The study used two types of messages to indicate intent: pending and active. Pending messages were sent before the robot started moving to give users operating in close proximity to the robot an opportunity to react and move out of the way if necessary. Active messages were sent when the robot started moving in the intended direction.

The LED array used basic directional symbols for forward, back, left, right, scan (360-degree rotation), and stop. These symbols would flash in the pending state and turn solid in the active state. Similarly, the Android device would display text messages from the robot that would flash in the pending state and turn solid in the active state. Finally, the Bluetooth headset would speak pending messages to the user. The results of that study indicated that participants generally preferred the LED array, followed by the Android interface, and the Bluetooth headset. Because the LED display could not be used as a method of supervisory control, it was decided to explore the use of the Android interface for touchscreen control, the Bluetooth headset for voice commands, and finally a Microsoft Kinect for hand gestures for control.

The rest of the paper presents the details of a recent study conducted for the evaluation of methods of supervisory control. Section II discusses background and related work in the literature. Section III discusses the experiment setup and methods used in this study. Sections IV and V provide an analysis and discussion of the results of the study. Finally, conclusions and future work are presented in Section VI.
different methods of supervisory control and those were compared to the use of a gamepad for manual control. An experiment site was designed and constructed for the purposes of this study.

A. System and Controls

1) Hardware: Four devices (shown in Fig. 1) were used in this research to control the robot: (1) a Microsoft Kinect to send commands using gesture recognition, (2) an Android smartphone that could send commands using its touchscreen, (3) an audio headset with attached microphone that was connected to the Android smartphone and could be used to send verbal commands, and (4) a wireless gamepad for manual teleoperation. The robot used for the study was a TurtleBot 2 (shown in Fig. 2) equipped with an onboard netbook and wireless router. The smartphone and Kinect were connected to the robot via Wi-Fi and used socket connections to send and receive data. The gamepad was connected to the laptop via wireless USB.

2) Software: The software architecture used in this experiment was designed as a distributed control system that supported a high degree of modularity that allowed for hardware components to be easily added or removed as necessary. This architecture was implemented using ROS; details of the developed architecture can be seen in Fig. 4. A publicly available code repository has been set up for sharing of the software developments from this research effort, located at https://github.com/stars-lab/Robot-Intent-and-Control-Project.

ROS allows for any number of independently running software programs to send messages back and forth between the robot and the control devices. The programs achieve this by publishing data across a ROS topic. Topics are named pathways in which data can stream unidirectionally. Modules can receive data from other modules by subscribing to topics. This design keeps each module independent from the others and drastically simplifies the overall software architecture.

The two largest nodes in the architecture are the Command Queue and the Turtlebot Mover. The Command Queue node is the central module responsible for managing movement requests and sending movement commands to the Turtlebot Mover. It has the ability to prioritize messages based on their source or message type (for example, an “Emergency Stop” message would be prioritized over a regular movement message). The Command Queue is also responsible for sending pending and active movement messages to the different intent and control interfaces via the “command_out” topic. The Turtlebot Mover node is responsible for converting movement commands from the Command Queue into actual motor movements and relaying the state of the robot’s movement back to the Command Queue via the “mover_status” topic.

The implemented software architecture allows for a high degree of portability to other robotic platforms. To port the system architecture used in this study to other robots, only two modules would need to be modified or exchanged: the odometry server and the TurtleBot movement module.

3) Control Methods: Each control device used a different method for sending an override command to the robot. The Android device received pending and active messages and displayed them to the user via messages on the screen. During a pending message, the user could tap the screen to bring up the override interface. This interface consisted of a left and right arrow. The user tapped the arrow button that corresponded to the direction they wanted the robot to rotate. When the participant used the audio headset connected to the Android device, the pending messages were played through the headset. If the user wanted to override the command, they would tap the override button on the Android device and then speak the command they wanted the robot to execute. These commands were not explicitly defined; the user could say any command as long as it contained a direction, so “Go left”, “Turn left”, and simply “Left” all produced the same result.

Participants using the Microsoft Kinect viewed a video feed from a camera on the robot that was displayed on a wall in the experiment site. The Microsoft Kinect device was mounted on the wall below the video feed, along with an Android tablet that displayed the pending and active messages to the user. Similar to the Android condition, when the tablet device displayed the pending message, the user could perform a specific gesture to override the intended action of the robot. The gestures for this study simply involved the user sweeping his or her arm across the body. The arm used determined which direction the robot turned (e.g., sweeping the left arm across the body would tell the
A wireless gamepad device was used as a control condition. Participants used the gamepad to manually control the robot. There was no autonomy to override; participants simply drove the robot through a defined maze. This simulates how tactical teams who work with robots currently control the robot.

4) Experiment Site: This study was carried out in the Human Performance Laboratory at the Center for Advanced Vehicular Systems (CAVS) at Mississippi State University. The maze used in the study was constructed as a modular system with multiple pathways of navigation, as shown in Fig. 3. The robot was able to execute a particular path through the maze using instructions embedded in Quick Response Codes (QR codes). These QR codes were mounted at decision points throughout the maze and could be swapped to generate different autonomous navigational behaviors for the robot; this modularity allowed the study to easily implement different maze patterns each time a participant navigated the maze.

Because of an accumulated odometry error, the TurtleBot’s odometry data was not sufficient for the robot to accurately navigate the maze according to the instructions embedded in the QR codes. To compensate for this, large pink squares were placed at the end of long corridors in the maze, and a module was implemented that allowed the robot to correct its heading using the pink squares. As the robot moved through a corridor, it used a forward-facing camera to track clusters of pink present in the camera feed.

B. Method

This study was a pilot study designed to evaluate a proof of concept for three different methods of supervisory control. The study was a within-subjects design that evaluated four conditions for the control of a robot: (1) hand gestures using a Microsoft Kinect, (2) an interactive Android touchscreen application on a hand-held mobile device, (3) verbal commands issued through a headset, and (4) the control condition of using a gamepad controller to manually teleoperate the robot.

The study involved a participant following a robot as it autonomously navigated a prefabricated maze described in the Experiment Site section. At each intersection of the maze, a visible arrow was displayed to indicate the correct direction for the robot to navigate. The robot conveyed its next intended direction to move to the participant through one of the control interface methods. At different intersections throughout the maze, the robot indicated to the participant that it planned to execute an incorrect turn. It was the participant’s responsibility to use the specified control interface for that condition to override and correct any erroneous decisions made by the robot. In the control condition, the participant used a gamepad to manually navigate the robot through the maze following the direction indicators at the intersection points.

Each participant followed the robot through the maze a total of four times, navigating a different maze pattern each time. The course tested one method of control for each pathway traversed; the four methods were randomized and counterbalanced. After each time through the maze, participants were asked to evaluate the method of control used to assist the robot’s navigation. At the end of the study, the participant completed a questionnaire that requested demographic information and answers to general questions about his/her interactions with the robot.

C. Participants

The study population consisted of 23 participants. Of those participants 70% were male and 30% female (16 and 7, respectively). Approximately half of the participants were in the 18-25 age range (48%, 11 participants) with the remaining between the ages of 26 and 65. A majority of the participants had no previous robotics experience (74%, 17 participants), and no participants indicated that they had strong prior robot experience (>4 on a 7 point Likert scale). Thirteen of the 23 participants had prior military or law enforcement experience (57%).
IV. RESULTS

Each participant was asked to answer 19 questions for each of the three methods of supervisory control for this project. These questions included both usability (e.g., How easy/difficult was it to use this interface to override the robot’s intent? or How easy/difficult was the interface to use?) and user experience questions (e.g., How frustrating was the interface to use? or How fun was the interface to use?). The responses for each survey question were weighted heavily toward the most positive response of the Likert or Semantic Differential Scales used for the survey questions. It was decided that the categorical variables used for each question would be recoded into dichotomous variables with 1 indicating the most positive response and 2 indicative of all other responses between 2 and 7, with 7 representing the most negative response for each question. Because the data collected was either dichotomous or categorical, it was decided that the appropriate data analysis method would be a Chi-Square test. Additionally, because the sample size for this pilot study was small, it was determined that in order to increase statistical power, the appropriate evaluation would be a Likelihood Ratio Chi-Square (L^2) test.

The results for two usability questions indicated statistically significant results. The first question that was statistically significant was How easy/difficult was it to use this interface to override the robot’s intent? (see Fig. 5). The results of the Likelihood Ratio Chi-Square were $L^2(2,23)=11.413, \ p=.003, \ d=1.58$. According to interpretations for Cohen’s d for effect size, this was considered a strong effect ($> .8$). The results indicated that the interactive Android touchscreen application on a handheld mobile device was the easiest to use to override the robot’s next intended movement (19 participants of 23 rated it with a score of 1 indicating easy). There was not a significant difference in the ease of overriding the robot’s intent for the voice command using a headset (13 participants rated it with a 1 for easy and 9 rated it with some other rating between 2 and 7). There was not a statistically significant result for hand gestures using the Microsoft Kinect (9 participants rated it with a 1 for easy, and 14 rated it with some other rating between 2 and 7). For a limited number of participants, data was missing for some of the devices.

Another question had a statistically significant result, which involved the survey question How easy/difficult was the interface to use? (see Fig. 6). The results of the Likelihood Ratio Chi-Square test were $L^2(3,23)=8.078, \ p=.044, \ d=.93$. Based on the interpretation of Cohen’s d for effect size, this was a strong effect ($> .8$). The result from this question indicated that 19 of 23 participants found the interactive Android touchscreen application on a handheld device was the easiest interface to use. Only three participants rated it with some other rating. The use of voice commands using a headset had no statistically significant difference, with 13 participants rating it a 1 for easy and 9 with some other response. The results were also not statistically significant for hand gestures using a Microsoft Kinect (11 rated it as easy, and 12 some other response) or for the manually operated gamepad (14 rated it as easy, and 8 rated it as some other response). For a limited number of participants, responses were not recorded for some interfaces and the data points were missing.

For the most part, the participants reported their interactions with all four methods of control as fun, enjoyable, exciting, and satisfying from a user experience perspective. In the case of the interactive Android touchscreen application on a handheld device, all but one participant rated the experience as positive, checking user experience responses for fun, satisfying, exciting, engaging, and/or enjoyable. The one participant rated his experience with this interface as stressful and frustrating.

V. DISCUSSION

The results demonstrate that the Android interface was both the easiest to use in general and specifically for overriding the robot’s next intended movements. Several factors could be responsible for this result. The most obvious reason may be that people are more comfortable using a device that is familiar to them; both the form factor and visual style of the Android interface would be instantly familiar to smartphone users. Another factor could be that the Android interface was the most straightforward to use - participants only needed to tap the screen, then tap the arrow that corresponded to the direction they wanted the robot to turn. For the voice recognition, participants had to tap a button on the screen, then recall a valid voice command. The Kinect gesture recognition condition had its own issues as described in the following paragraph. However, one key point raised by a participant was the fact that using the Android interface required them to “split attention between the interface, the robot, and the environment”. Future improvements to the Android interface may include video feeds from the robot to improve awareness of the environment, in addition to the integration of a system for displaying the robots state on the interface to reduce the demand for directly monitoring the robot.

Based on anecdotal comments, participants found the gestures used with the Microsoft Kinect “counter-intuitive”
and “weird.” Participants also noted that there were issues in the accuracy of the gesture recognition, with one participant saying, “I scratched my face, and the system sent a stop message.” This would likely explain why the Kinect interface received lower responses in the survey results.

Comments on the gamepad controller were generally positive, noting that several participants liked the complete control of the robot’s movements this interface provided to the user. Participants also noted how “precise” the control was and how fluid the robot’s movements appeared. However, as mentioned earlier in this paper and echoed by one participant, using this interface prevented the user from doing anything else with their hands, diminishing their effectiveness as a teammate.

VI. CONCLUSIONS AND FUTURE WORK

The development of a user interface for the supervisory control of a robot is an area that has not received significant attention from the research community, especially as it relates to the integration of a robot as a member of a tactical team. The development and evaluation of an effective method of supervisory control of a robot is essential for SWAT teams. This is very important for smaller municipalities, that may not have the resources to staff and train a full-time tactical team. These teams cannot afford to take an officer “out of the fight” to manually operate a robot in unpredictable and often hostile environments. This study proposed and evaluated three supervisory control methods for the operation of a robot: gesture recognition using a Microsoft Kinect, an interactive Android touchscreen interface, and verbal commands through a headset.

The results presented in this study indicate that, out of the three interfaces tested, the interactive Android touchscreen application was both the easiest interface to use in general and to override the robot’s next intended movement. Based on participant feedback, hand gestures interpreted by a Microsoft Kinect resulted in the least desirable user experience. The participant feedback on the voice command interface was neutral for most measures. Overall the study received positive feedback from most of the participants.

The results from this pilot study will be used to adjust future participant surveys to better differentiate the strengths and weaknesses of each interface, and to determine why specific interfaces received certain ratings. In future studies, gesture interfaces such as a more sensitive wearable system (e.g., JPL’s BioSleeve [14]) could provide an overall better user experience. Future work includes the integration and evaluation of an interactive Android touchscreen application for supervisory control portal to the robotic system currently used in training exercises with the Starkville Police Department SWAT team.

ACKNOWLEDGMENTS

The authors wish to thank Paul Barrett, John Kelly, Jacob Mason, Malcolm McCullum, and Nathan Smith for their assistance on the development team for this project, as well as Brendan Cogley, Kayla Huddleston, Daniel Waddell, and Jesse Williams for assisting with data collection. We would also like to thank the Starkville Police Department and the Mississippi State University G.V. “Sonny” Montgomery Center for America’s Veterans for their support and assistance.

REFERENCES